Deformation of a HW-Cyclic Barsotti-Tate Group

نویسندگان

  • Yichao Tian
  • Peter Schneider
چکیده

Let k be an algebrai ally losed eld of hara teristi p > 0, andG be a Barsotti-Tate over k. We denote by S the algebrai lo al moduli in hara teristi p of G, by G the universal deformation of G over S, and by U ⊂ S the ordinary lo us of G. The étale part of G over U gives rise to a monodromy representation ρG of the fundamental group of U on the Tate module of G. Motivated by a famous theorem of Igusa, we prove in this arti le that ρG is surje tive if G is onne ted and HWy li . This latter ondition is equivalent to saying that Oort's a-number of G equals 1, and it is satis ed by all onne ted one-dimensional Barsotti-Tate groups over k. 2000 Mathemati s Subje t Classi ation: 13D10, 14L05, 14H30, 14B12, 14D15, 14L15

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Conjecture of Conrad, Diamond, and Taylor

We prove a conjecture of Conrad, Diamond, and Taylor on the size of certain deformation rings parametrizing potentially Barsotti-Tate Galois representations. To achieve this, we extend results of Breuil and Mézard (classifying Galois lattices in semistable representations in terms of “strongly divisible modules”) to the potentially crystalline case in Hodge-Tate weights (0, 1). We then use thes...

متن کامل

Tame-blind Extension of Morphisms of Truncated Barsotti-tate Group Schemes

The purpose of the present paper is to show that morphisms between the generic fibers of truncated Barsotti-Tate group schemes over mixed characteristic complete discrete valuation rings with perfect residue fields extend in a “tame-blind” fashion — i.e., under a condition which is unaffected by passing to a tame extension — to morphisms between the original truncated Barsotti-Tate group scheme...

متن کامل

Modularity of Certain Potentially Barsotti-tate Galois Representations

Conjectures of Langlands, Fontaine and Mazur [22] predict that certain Galois representations ρ : Gal(Q/Q)→ GL2(Q`) (where ` denotes a fixed prime) should arise from modular forms. This applies in particular to representations defined by the action of Gal(Q/Q) on the `-adic Tate module of an elliptic curve defined over Q, and so implies the Shimura-TaniyamaWeil conjecture. Wiles’ breakthrough i...

متن کامل

The Breuil–mézard Conjecture for Potentially Barsotti–tate Representations. Toby Gee and Mark Kisin

We prove the Breuil–Mézard conjecture for 2-dimensional potentially Barsotti–Tate representations of the absolute Galois group GK , K a finite extension of Qp, for any p > 2 (up to the question of determining precise values for the multiplicities that occur). In the case that K/Qp is unramified, we also determine most of the multiplicities. We then apply these results to the weight part of Serr...

متن کامل

On the Deformation of a Barsotti-tate Group over a Projective Base

In this paper, we study deformations of pairs (C,G) where G is a (truncated) BarsottiTate group over a complete curve C on an algebraically closed field k of characteristic p. We prove that, if the curve C is a versal deformation of G, then there exists a unique lifting of the pair to the Witt ring W . We apply this result in the case of Shimura curves to obtain a lifting criterion. This result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009